Note

N.m.r. spectra (1 H, 13 C) of the methyl mono-, di-, and tri-O-acetyl- β -D-xylopyranosides, and additivity effects

EVA PETRÁKOVÁ

Institute of Chemistry, Slovak Academy of Sciences, 842 38 Bratislava (Czechoslovakia)

AND JAN SCHRAML

Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague (Czechoslovakia)

(Received November 1st, 1982; accepted for publication, December 8th, 1982)

In a recent communication on ${}^{1}\text{H-}$ and ${}^{13}\text{-C-n.m.r.}$ chemical shifts for acetylated methyl α - and β -D-xylopyranosides in solution in $(CD_3)_2SO$, McEwan *et al.* reported good additivity of acetylation effects and, from the nearly constant $J_{\text{H.H}}$ values, concluded that the conformation of the pyranoid ring was altered very little, if at all, by the introduction of an acyl group at any position. For benzoylated methyl β -D-xylopyranosides in solution in CDCl₃, we have found that (a) ^{13}C benzoylation effects are not additive, (b) coupling constants depend on the number and position of benzoyl groups, and (c) benzoylation affects conformer populations.

Therefore, we have undertaken a limited study of 13 C- and 1 H-n.m.r. spectra of all possible mono-, di-, and tri-O-acetyl derivatives of methyl β -D-xylopyranoside as solutions in CDCl₃, in order to identify the factor (substituent or solvent) responsible for the reported difference in behaviour.

Syntheses of the acetylated methyl β -D-xylopyranosides have been described $^{4-7}$, and n.m.r. measurements were carried out as described previously². With the exception of three pairs of lines noted in Table I, all 13 C chemical shifts were assigned unambiguously by 13 C- 1 H heteronuclear-decoupling experiments. Ambiguity in the assignment of the signals of C-2 and C-3 for methyl 4-O-acetyl- β -D-xylopyranoside (4) is not important, since the chemical shifts differ only by 0.01 p.p.m. For methyl 2,3-di-O-acetyl- β -D-xylopyranoside (5), the chemical shifts of these signals differ by 5 p.p.m. and they can be assigned according to the additivity rule. The signals for C-2 and C-4 of methyl 2,4-di-O-acetyl- β -D-xylopyranoside (6) were also assigned according to the additivity rule, although less convincingly.

The ¹³C chemical shifts of O-acetyl derivatives of methyl β -D-xylopyranoside in CDCl₃ (Table I) differ appreciably (up to ± 2.5 p.p.m.) from those determined in (CD₃)₂SO. Therefore, it is not surprising that significantly different acetylation-shifts (¹³C-DCS values of Table II) were found. Most remarkable was the small,

	(
	Ç
	;
	:
	;
	:
	- 5
	Ċ
	2
	7
	;
-	`
ш	
3	- 3
Ą	Ĉ
TABLEI	The second secon

C-VMR CHEMICAL SHIFTS	MICAL SHIL		ALTHYLC	FOR METHYL O-ACELLE-B-D-VYLOPYRANOSIDES	D-VM OPYRA	NOSIDES			œ C		
Compound	R²	R³	R4	C-I	C-2	<u>C3</u>	4.7	C-5	OCH ₃		O=0
\mathbf{I}_{b}	H	Η	Η	103 25	71.89	75.23	68.38	64.36	55.10		in the second se
2	Ac	Η	Ή	100.76	72 02	72.66	89.69	63.14	56.43	20 98	p
m	Η	Αc	Η	103 88	71.17	77.46	68.77	65.15	56.99	21 07	172.50
4	Ξ	Ξ	Ac	103.24	72.13	72.15	71.33	61.29	56.75	20.96	d
w	Ac	Ac	Ξ	101.58	70.45°	75.30	68.52	64.73	56.63	20.79,20 72	171.39,169,56
9	Ac	H	Ac	100.37	71.21	69.65	70.84	60.16	56.28	20 92,20.92	170.41,170.20
7	Η	Αc	Ac	104.05	71.77	73.50	SO 69	62.41	57.11	20 85,20 73	170.63:169 91
œ	Αc	Ac	Ac	101.58	70 74	71.46	68.94	61.98	56.62	20 71,20,71	P
30 50	!									20.71	

"Chemical shifts on the δ scale (error ± 0.02 p.p m.) for solutions in CDC1s, "Measured with added (CDs)2SO." Assignment of the two lines within the labelled pair could not be made by selective decoupling. "Not recorded."

NOTE 287

TABLETI
13 C-DCS values for O -acetylation of methyl eta -d-xylopyranosides, and the calculated chemi-
CAL-SHIFTS

Compound	C-1	C-2	C-3	C-4	C-5
2^a	-2.49	0.13	-2.57	1.30	-1.22
3^a	0.63	-0.72	2.23	0.39	0.79
4 ^a	-0.01	0.24	-3.08	2.95	-3.07
5^b	101.39	71.30	74.89	70.07	63.93
	(0.19)	(-0.85)	(0.41)	(-1.55)	(0.80)
\mathbf{S}^{b}	100 75	72.26	69.58	72.63	60.07
	(-0.38)	(-1.05)	(0.07)	(-1.79)	(0.09)
7 ^b	103.87	71.41	74.38	71.72	62.08
	(0.18)	(0.36)	(-0.88)	(-2.67)	(0.33)
8^{b}	101.38	71.54	71.81	73.02	60.86
	(0.20)	(-0.80)	(-0.35)	(-4.08)	(1.12)

^aCalculated by subtracting the chemical shift for the parent compound 1 from the corresponding shift for the monobenzoate. ^bCalculated as the sum of the corresponding chemical-shift for 1 and of the appropriate DCS values. Values in brackets are the differences between the experimental and calculated chemical-shifts.

positive DCS value for C-4 on 3-O-acetylation; β -acetylation shifts are usually ^{1,8,9} in the range of -1 to -4 p.p.m.

The deviations from the additivity (i.e., the differences between the calculated and experimental chemical-shifts for di- and tri-acetates) are smaller for acetylation than for benzoylation² of methyl β -D-xylopyranosides with CDCl₃ as solvent, but are much larger than found¹, with (CD₃)₂SO as solvent, for acetylation

TABLE III $^{13}\text{C-DCS Values for deacetylation of methyl. 2,3,4-tri-O-acetyl-β-d-xylopyranoside, and the calculated Chemical-shifts for methyl. O-acetyl-β-d-xylopyranosides}$

Compound	C-1	C-2	C-3	C-4	C-5
7 ^a	2.47	1.03	2.04	0.11	0.43
6 ^a	-1.11	0.47	-1.81	0.90	-1.82
5^a	0.00	0.01	4.03	-0.42	2.75
4^{b}	102.84	72.24	71.69	70.95	60.59
	(0.40)	(0.11)	(0.46)	(0.38)	(0.70)
3^b	104.05	71.48	77.34	68.63	65.16
	(-0.17)	(-0.31)	(0.12)	(0.14)	(-0.01)
2^b	100.37	70.92	73.49	70.42	62.91
	(0.39)	(1.10)	(-0.83)	(0.74)	(0.24)

[&]quot;DCS values calculated by subtracting the corresponding chemical-shift for the reference compound 8 from that for the dibenzoate. ^bThe chemical shifts calculated as the sum of the corresponding shift for 8 and the appropriate DCS values. Values in brackets are the differences between the experimental and calculated chemical-shifts.

TABLEIV

 $^{1} ext{H-N-M-R}$ data (CDCL) formenthe O aceny eta-dyntopyranosides (1–8)

1									1						
Compound	Сћети	n al shifts ^h (ð)	^μ (δ)							Coupli	oupling constants' (Hz)	uts' (Hz)		!	,
	− H-I	H-2	H-3	t-H	₇₅ -H	H-5''d	OMe	OAc		J.2		1,4	, t	, + ;<	I, s,
	4 13	3.21	3 36	3.52	 	3 19	3.47	-		7 14	x x	×.×	5.0	10.0	-113
. 7	97 7	4 75	3,65	3 70/	%) +	3.42	3.48			5 13	7.1	5€ ⊗	36	7.0	- 11 9
. ~	\frac{\fir}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}{\frac{\	3.50	4 %	3 77	\$() †	3.33	3.54	2.17		6 84	κ, v	v, X	4	6 6	- 11 7
1	4.33	3.50	3 73	*	01	3 37	3.52	2 12		5.86	7 48	4	۲,	7.5	-121
· v	00°	16+	78.7 7	- 2	8E) +	3 37	3 47	2 10	2.07	,8 9 9	∞ ∞	× ×	5 †	6 8	-1117
, ve	×7	- 2	۳. ح	4 58	7	3 45	3 47	2 13	2.12	5.25	7.0	7 ()	4.2	99	- 12.2
7	4 25	3.512	9	16.7	90 +	73.4	3.54	2.10	E	7 08	* *	38 88	53	9.3	-116
· oc	9	16+	5 17	1 95/	7	3 37	3 47	J 06		6.71	ř.	šć,	20	8 7	× =
								2 05	2 03						

For numbering of compounds, see Table I berror ± 0.01 p.p. where ± 0.1 Hz, except for I₁ where the error ± 0.04 Hz "fine signal for H-5'a is at a higher neld than that for H-5e. Measured in a mixed solvent {CDCl₁ + (CD₂)-SO} | Strongly coupled protons (error ± 0.04 p.p.m.) Trior ± 0.5 Hz "Virtually coupled system, error 2.0.1 Hz. Signal overlap possible, error ±0.03 p.m.

TABLE V
ESTIMATES OF 4C_1 Conformer populations (P) formethyl O-acetyl- β -d-xylopyranosides (1–8) a

Compound ^b	P _I ^c	P_{II}^{d}	Average	
1	0.86	0.89	0.87 ± 0.02	
2	0.58	0.57	0.58 ± 0.01	
3	0.88	0.81	0.82 ± 0.01	
4	0.68	0.62	0.65 ± 0.03	
5	0.82	0.77	0.79 ± 0.03	
6	0.60	0 53	0.56 ± 0.04	
7	0.86	0.81	0.83 ± 0.03	
8	0.80	0.75	0.78 ± 0.03	

^aIn mol fractions. ^bFor numbering of the compounds, see Table I. 'Estimated from the equation $J_{1,2} = 8.1 P_{\rm I} + 1.0 (1 - P_{\rm I})$. ^dEstimated from the equation $J_{4.5'} = 11.1 P_{\rm II} + 1.5 (1 - P_{\rm II})$.

of the same compounds. For example, application of the additivity rule gives a wrong prediction of shielding order of skeletal carbons for 8 [predicted: $\delta(\text{C-4}) > \delta(\text{C-3}) > \delta(\text{C-2})$; observed: $\delta(\text{C-3}) > \delta(\text{C-2}) > \delta(\text{C-4})$], which invalidates the rule for assignment purposes.

Acetylation DCS-values and the calculated shifts in Table II are based on the chemical shifts for 1, which served as a reference compound. Since the chemical shifts were shown above to be solvent-dependent and since the data for 1 had to be obtained using a mixed solvent, the additivity rule should be better satisfied if deacetylation DCS-values^{2,8,9} are considered. These values are based on the chemical shifts for the triacetate 8, the data for which were obtained using the same solvent as for the other compounds. The data in Table III indicate that this is the case; the additivity rule is satisfied with a standard deviation of ± 0.52 p.p.m. [for (CD₃)₂SO, the standard deviation was ± 0.40 p.p.m. for the same series of compounds¹] which, for many purposes, is acceptable.

The non-validity of the additivity rule for the series of benzoylated methyl β -D-xylopyranosides was explained² in terms of conformational heterogeneity in which the populations of the 4C_1 conformers varied between 28 and 88%. Using the $J_{1,2}$ and $J_{4,5}$ values (Table IV), conformer populations for solutions in CDCl₃ were derived for 2–8. The conformer populations given in Table V seem to be realistic, since they exhibit good, linear correlation with 13 C chemical shifts of MeO-1 signals which are dependent on conformer populations 10 (notable deviations occur only for 5 and 8). In qualitative agreement with the extent to which the additivity rule is satisfied in the series considered, the conformer populations of acetates vary for solutions in CDCl₃ more than for those in (CD₃)₂SO and less than those for benzoates in CDCl₃.

The conclusion of Yoshimoto *et al.*¹¹, accepted by McEwan *et al.*¹, that the conformation of the pyranoid ring is altered very little, if at all, by the introduction of an acyl group at any position is not substantiated by our results, which indicate

290 NOTE

that the conformer populations of the pyranoid ring depend on the nature and position of the acyl group, and on the solvent.

REFERENCES

- 1 T McEwan, A. G McInnes, and D. G Smith, Carbohydr. Res., 104 (1982) 161-168.
- 2 E. Petrakova and J. Schraml, Collect. Czech. Chem. Commun., 48 (1983) 877-888.
- 3 P. L. DURFITF AND D. HORTON, Carbohydr. Res., 18 (1971) 403-418.
- 4 P. KOVAČ AND R. PALOVČIK, Chem. Zvesti, 31 (1977) 98-105.
- 5 P Kovać and J Alfoldi, Chem Zvesti, 32 (1978) 519–523
- 6 P KOVAC AND J ALFOLDI, Chem. Zvesti, 33 (1979) 785–791.
- 7 E PETRAKOVA AND P KOVAC, Carbohydr Res., 101 (1982) 141–147
- 8 H. KOMURA, A. MATSUNO, Y. ISHIDO, K. KUSHIDA AND K. AOKI, Carbohydr. Res., 65 (1978) 271–277.
- 9 J-P. Utille and P. J. A. Vottfro, Carbohydr. Res., 85 (1980) 289-297
- 10 E. Breitmaier and W. Voelter, ¹³C NMR Spectroscopy, Verlag Chemie, Weinheim, 1974, pp. 223–233.
- 11 K YOSHIMOTO, Y ITATANI, K SHIBATA, AND Y TSUDA, Chem Pharm Bull., 28 (1980) 208-219.